Rhamnolipid biosurfactants—past, present, and future scenario of global market

نویسندگان

  • Kamaljeet K. Sekhon Randhawa
  • Pattanathu K. S. M. Rahman
چکیده

RHAMNOLIPIDS—BRIEF OUTLINE Biosurfactants, widely known as surfaceactive agents of biological origin, have carved a niche for themselves in the market due to their unique environmentfriendly properties. They have come a long way since first biosurfactant “surfactin” was purified and characterized by Arima et al. (1968). Biosurfactants have been researched thoroughly and satisfactorily since then by many research groups across the world yet there are aspects that elude our understanding. There are five major categories of biosurfactants viz. glycolipids, phospholipids and fatty acids, lipopeptides and lipoproteins, polymeric biosurfactants and particulate biosurfactants that have found applications in agricultural, pharmaceutical, food, cosmetics, and detergent industries. Data reveals there are more than 250 patents obtained on these wonder biodegradable molecules so far (Shete et al., 2006; Rahman and Gakpe, 2008). It has also been observed that microbial biosurfactants are advantageous over plantbased surfactants because of the scale-up capacity, rapid production, and multifunctional properties. Several plant-based biosurfactants for example saponins, lecithins, and soy proteins have excellent emulsification properties but are expensive to produce at industrial scale and have other debatable issues such as solubility and hydrophobicity (Xu et al., 2011). Among the various categories of biosurfactants the glycolipid biosurfactants “rhamnolipids” stand apart. Rhamnolipid, primarily a crystalline acid, is composed of β-hydroxy fatty acid connected by the carboxyl end to a rhamnose sugar molecule. Rhamnolipids are predominantly produced by Pseudomonas aeruginosa and classified as: mono and di-rhamnolipids. Other Pseudomonas species that have been reported to produce rhamnolipids are P. chlororaphis, P. plantarii, P. putida, and P. fluorescens. Some bacteria are known to produce only mono-rhamnolipids while some produce both. The ratio of mono and di-rhamnolipid can also be controlled in the production method. There are enzymes available that can convert monorhamnolipids into di-rhamnolipids. In 1984, the first patent for the production of rhamnolipids was filed by Kaeppeli and Guerra-Santos (US 4628030) and obtained in 1986 for their work on Pseudomonas aeruginosa DSM 2659 (Kaeppeli and Guerra-Santos, 1986). Subsequently, Wagner et al. filed a patent (US 4814272) in 1985 for the biotechnical production of rhamnolipids from Pseudomonas sp. DSM 2874 and obtained the same in 1989 (Wagner et al., 1989). In the past close to three decades, there has been a great body of research work carried on rhamnolipids revealing many of their astonishing applications and making them reach the pinnacle of popularity among all the categories of biosurfactants in the global market. The reason behind the current global interest in rhamnolipid production owes to their broad range of applications in various industries along with many spectacular “eco-friendly” properties. The current critique articulates to present opinion on rhamnolipid research and is an attempt to retrospect what brings rhamnolipids in the forefront. This article is a bird’s-eye view on a timeline of rhamnolipids story so far and also a critical analysis on why despite so many patents and research work rhamnolipids still do not rule the global biosurfactant market.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rhamnolipid Biosurfactants Produced by Pseudomonas Species

Surfactants are chemical products widely used in our daily life in toothpaste and other personal hygiene and cosmetic products, and in several industries. Biosurfactants are surfactants of biological origin that can be produced by microorganisms and have many advantages, such as low toxicity and high biodegradability, compared to synthetic counterparts. Unfortunately, high production costs limi...

متن کامل

Experimental investigations of behaviour of rhamnolipid biosurfactants as a green stabilizer for the biological synthesis of gold nanoparticles

Use of biosurfactants as a green stabilizer for the biological synthesis of gold nanoparticles (AuNPs) is now emerging as nontoxic and environmentally acceptable "green chemistry" procedures. Stability of AuNPs at different pHs is very important because our body has different pHs. This paper addresses this issue. In this work, first P. aeruginosa PTCC 13401 was used to produce rhamnolipid biosu...

متن کامل

Efficient Dye Removal from Aqueous Solutions Using Rhamnolipid Biosurfactants by Foam Flotation

Methylene blue was efficiently removed from aqueous solution by foam flotation using a rhamnolipid a biosurfactant as a dye collector. The effects of four parameters, namely, pH (1.5–11.5), frother concentration (5–65 ppm), aeration rate (2–6 L/min) and rhamnolipid to methylene blue weight ratio (0.5–6.5), on dye removal were studied and optimized using response surface methodology. Results...

متن کامل

Utilization of Crude Glycerol as a Substrate for the Production of Rhamnolipid by Pseudomonas aeruginosa

Biosurfactants are produced by bacteria or yeast utilizing different substrates as sugars, glycerol, or oils. They have important applications in the detergent, oil, and pharmaceutical industries. Glycerol is the product of biodiesel industry and the existing glycerol market cannot accommodate the excess amounts generated; consequently, new markets for refined glycerol need to be developed. The...

متن کامل

Characterization and Emulsification Properties of Rhamnolipid and Sophorolipid Biosurfactants and Their Applications

Due to their non-toxic nature, biodegradability and production from renewable resources, research has shown an increasing interest in the use of biosurfactants in a wide variety of applications. This paper reviews the characterization of rhamnolipid and sophorolipid biosurfactants based on their hydrophilicity/hydrophobicity and their ability to form microemulsions with a range of oils without ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014